Variational principles for nonlinear dynamical systems
نویسندگان
چکیده
منابع مشابه
Dynamical Variational Principles for Strongly Correlated Electron Systems
The self-energy-functional approach (SFA) is discussed in the context of different variational principles for strongly correlated electron systems. Formal analogies between static and dynamical variational approaches, different types of approximation strategies and the relations to density-functional and dynamical mean-field theory are emphasized. The discussion elucidates the strengths of the ...
متن کاملMultistage Modified Sinc Method for Solving Nonlinear Dynamical Systems
The sinc method is known as an ecient numerical method for solving ordinary or par-tial dierential equations but the system of dierential equations has not been solved by this method which is the focus of this paper. We have shown that the proposed version of sinc is able to solve sti system while Runge-kutta method can not able to solve. Moreover, Due to the great attention to mathematical mod...
متن کاملVariational Principles for Eigenvalues of Nonlinear Eigenproblems
Variational principles are very powerful tools when studying self-adjoint linear operators on a Hilbert spaceH. Bounds for eigenvalues, comparison theorems, interlacing results and monotonicity of eigenvalues can be proved easily with these characterizations, to name just a few. In this paper we consider generalization of these principles to families of linear, self-adjoint operators depending ...
متن کاملVariational Principles for Some Nonlinear Wave Equations
Generally speaking, there exist two basic ways to describe a physical problem [1]: (1) by differential equations (DE) with boundary or initial conditions; (2) by variational principles (VP). The VP model has many advantages over its DE partner: simple and compact in form while comprehensive in content, encompassing implicitly almost all information characterizing the problem under consideration...
متن کاملobservational dynamical systems
چکیده در این پایاننامه ابتدا فضاهای متریک فازی را به صورت مشاهدهگرایانه بررسی میکنیم. فضاهای متریک فازی و توپولوژی تولید شده توسط این متریک معرفی شدهاند. سپس بر اساس فضاهایی که در فصل اول معرفی شدهاند آشوب توپولوژیکی، مینیمالیتی و مجموعههای متقاطع در شیوههای مختلف بررسی شده- اند. در فصل سوم مفهوم مجموعههای جاذب فازی به عنوان یک مفهوم پایهای در سیستمهای نیم-دینامیکی نسبی، تعریف شده است. ...
15 صفحه اولذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Mathematical Physics
سال: 1998
ISSN: 0022-2488,1089-7658
DOI: 10.1063/1.532363